Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 207: 108407, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38340690

RESUMO

Major portion of wheat grain consist of carbohydrate, mainly starch. The proportion of amylose and amylopectin in starch greatly influence the end product quality. Advancement in understanding starch biosynthesis pathway and modulating key genes has enabled the genetic modification of crops resulting in enhanced starch quality. However, the regulation of starch biosynthesis genes still remains unexplored. So, to expand the limited knowledge, here, we characterized a Ser/Thr kinase, SnRK1α in wheat and determined its role in regulating starch biosynthesis. SnRK1 is an evolutionary conserved protein kinase and share homology to yeast SNF1. Yeast complementation assay suggests TaSnRK1α restores growth defect and promotes glycogen accumulation. Domain analysis and complementation assay with truncated domain proteins suggest the importance of ATP-binding and UBA domain in TaSnRK1α activity. Sub-cellular localization identified nuclear and cytoplasmic localization of TaSnRK1α in tobacco leaves. Further, heterologous over-expression (O/E) of TaSnRK1α in Arabidopsis not only led to increase in starch content but also enlarges the starch granules. TaSnRK1α was found to restore starch accumulation in Arabidopsis kin10. Remarkably, TaSnRK1α O/E increases the AGPase activity suggesting the direct regulation of rate limiting enzyme AGPase involved in starch biosynthesis. Furthermore, in vitro and in vivo interaction assay reveal that TaSnRK1α interacts with AGPase large sub-unit. Overall, our findings indicate that TaSnRK1α plays a role in starch biosynthesis by regulating AGPase activity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Triticum/genética , Triticum/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Glucose-1-Fosfato Adenililtransferase/genética , Glucose-1-Fosfato Adenililtransferase/metabolismo , Saccharomyces cerevisiae/metabolismo , Amido/metabolismo , Sacarose/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
2.
Plant Physiol Biochem ; 203: 108040, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37738867

RESUMO

Amylose, a starch subcomponent, can bind lipids within its helical groove and form an amylose-lipid complex, known as resistant starch type 5 (RS-5). RS contributes to lower glycaemic index of grain with health benefits. Unfortunately, genes involved in lipid biosynthesis in wheat grain remain elusive. Our study aims to characterize the lipid biosynthesis gene and its post-transcriptional regulation using the parent bread wheat variety 'C 306' and its EMS-induced mutant line 'TAC 75' varying in amylose content. Quantitative analyses of starch-bound lipids showed that 'TAC 75' has significantly higher lipid content in grains than 'C 306' variety. Furthermore, expression analyses revealed the higher expression of wheat phospholipid: diacylglycerol acyltransferase-like (PDAT-like) in the 'TAC 75' compared to the 'C 306'. Overexpression and ectopic expression of TaPDAT in yeast and tobacco leaf confirmed its ability to accumulate lipids in vivo. Enzyme activity assay showed that TaPDAT catalyzes the triacylglycerol synthesis by acylating 1,2-diacylglycerol. Interestingly, the long non-coding RNA, lnc663, was upregulated with the TaPDAT gene, while the miRNA, miR1128, downregulated in the 'TAC 75', indicating a regulatory relationship. The GFP reporter assay confirmed that the lnc663 acts as a positive regulator, and the miR1128 as a negative regulator of the TaPDAT gene, which controls lipid accumulation in wheat grain. Our findings outline TaPDAT-mediated biosynthesis of lipid accumulation and reveal the molecular mechanism of the lnc663 and miR1128 mediated regulation of the TaPDAT gene in wheat grain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA